On the Randić index and girth of graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Randić index and the diameter of graphs

The Randić index R(G) of a graph G is defined as the sum of 1 √dudv over all edges uv of G, where du and dv are the degrees of vertices u and v, respectively. Let D(G) be the diameter of Gwhen G is connected. Aouchiche et al. (2007) [1] conjectured that among all connected graphs G on n vertices the path Pn achieves the minimum values for both R(G)/D(G) and R(G) − D(G). We prove this conjecture...

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

On the Higher Randić Index

Let G be a simple graph with vertex set V(G) {v1,v2 ,...vn} . For every vertex i v , ( ) i  v represents the degree of vertex i v . The h-th order of Randić index, h R is defined as the sum of terms 1 2 1 1 ( ), ( )... ( ) i i ih  v  v  v  over all paths of length h contained (as sub graphs) in G . In this paper , some bounds for higher Randić index and a method for computing the higher R...

متن کامل

On The Harmonic Index and The Girth for Graphs

The harmonic index of a graph G is defined as the sum of the weights 2 d(u) + d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this work, we present the minimum and maximum values of the harmonic index for connected graphs with girth at least k (k ≥ 3), and characterize the corresponding extremal graphs. Using this result, we obtain several relations between the h...

متن کامل

Hermitian-Randić matrix and Hermitian-Randić energy of mixed graphs

Let M be a mixed graph and [Formula: see text] be its Hermitian-adjacency matrix. If we add a Randić weight to every edge and arc in M, then we can get a new weighted Hermitian-adjacency matrix. What are the properties of this new matrix? Motivated by this, we define the Hermitian-Randić matrix [Formula: see text] of a mixed graph M, where [Formula: see text] ([Formula: see text]) if [Formula: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2013

ISSN: 0166-218X

DOI: 10.1016/j.dam.2012.07.017